内容简介
随着计算机科学日趋成熟并走向规范化,作为其基础的计算理论的重要性也更加突出。作者根据本书第一版出版后使用中教师和学生的反馈意见和想法以及计算机科学的发展进行了修订。本书既讲述了经典的计算理论,又介绍了现代计算理论。 本书适合于计算机系作本科生教材;也是一本难得的有关计算理论的参考书。
目录
Preface to the First Edition Preface to the Second Edition Introduction 1 Sets, Relations, and Languages 1.1 Sets 1.2 Relations and functions 1.3 Special types of binary relations 1.4 Finite and infinite sets 1.5 Three fundamental proof techniques 1.6 Closures and algorithms 1.7 Alphabets and languages 1.8 Finite representations of languages References 2 Finite Automata 2.1 Deterministic finite automata 2.2 Nondeterministic finite automata 2.3 Finite automata and regular expressions 2.4 Languages that are aJnd are not regular 2.5 State minimization 2.6 Algorithmic aspects of finite automata References 3 Cootext-free Languages 3.1 Context-free grammars 3.2 Parse trees 3.3 Pushdown automata 3.4 Pushdown automata and context-free grammars 3.5 Languages that are and are not context-free 3.6 Algorithms for context-free grammars 3.7 Determinism and parsing References 4 Turing machines 4.1 The definition of Turing machines 4.2 Computing with Turing machines 4.3 Extensions of Turing machines 4.4 Random access Turing machines 4.5 Nondeterministic Turing machines 4.6 Grammars 4.7 Numerical functions References 5 Undecidability 5.1 The Church-Turing thesis 5.2 Universal Turing machines 5.3 The halting problem 5.4 Unsolvable problems about Turing machines 5.5 Unsolvable problems about grammars 5.6 An unsolvable tiling problem 5.7 Properties of recursive languages References 6 Computational Complexity 6.1 The class P 6.2 Problems, problems 6.3 Boolean satisfiability 6.4 The class NP References 7 NP-completeness 7.1 Polynomial-time reductions 7.2 Cook''s Theorem 7.3 More NP-complete problems 7.4 Coping with NP-comp1eteness References Index